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Packet Switching in Radio Channels:  Part  Il-The 

Hidden Terminal  Problem in Carrier Sense 
Multiple-Access and the  Busy-Tone  Solution 

Abstracf-We consider a population of terminals communicating 
with a central station over a packet-switched multiple-access radio 
channel. The performance of carrier sense multiple access (CSMA) 
[l] used as a method for  multiplexing these terminals is highly de- 
pendent on the ability of each terminal to sense the carrier of any 
other transmission on the channel. Many situations exist  in which 
some terminals are “hidden” from each other (either because they 
are out-of-sight or out-of-range). In this paper  we  show that the 
existence of hidden terminals significantly degrades the performance 
of  CSMA. Furthermore,  we  introduce  and  analyze the busy-tone 
multiple-access (BTMA) mode as a natural extension of  CSMA to 
eliminate the hidden-terminal problem. Numerical results giving 
the bandwidth utilization and packet delays are shown, illustrating 
that  BTMA  with hidden terminals performs almost as well as CSMA 
without hidden terminals. 

I.  INTRODUCTION 

T HE USE of packet switching in a multiple-access 
broadcast  radio  channel for communication between 

terminals  and a central  station was presented in  Part I [l]. 
We also introduced and analyzed a new random-access 
mode, the carrier sense multiple-access mode (CSMA) , 
as a  means of multiplexing a  large  number of terminals 
communicating  with the  station over the shared  radio 
channel.‘ Briefly, CSMA consists of reducing the level of 
interference  (caused by overlapping  packets) in  the 
random multiaccess environment by allowing terminals 
to sense the carrier  due to other users’ transmissions; based 
on  the information gained in this  way  about  the  state of 
the channel  (busy or idle),  the  terminal  takes  an action 
prescribed by  the  particular CSMA protocol being used 
(in  particular, a terminal  never  transmits when it senses 
the channel busy).  In  Part I we described and analyzed 
three protocols referred to  as: 1-persistent;  nonpersistent; 
and p-persistent CSMA. The  evaluation of performance of 
the various protocols obtained there  (Part I) was based 
on  the assumption that all  terminals  are  in line-of-sight 
(LOS) and within  range of each  other. However there  are 
many  situations  in which this is not  true, forcing us to  
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the results  and  terminology  introduced in [I]. 

relax the above  assumption here. Two  terminals  can  be 
within  range of the  station  but out-of-range of each other; 
or they  can be separated  by some physical obstacle 
opaque to  UHF signals. Two  such  terminals are said to 
be  “hidden”  from  each  other. It is evident that  the exis- 
tence of hidden  elements in  an environment affects 
(degrades) the performance of CSMA. In  this  paper we 
first attempt  to gain some insight about  this effect. This 
is the subject of Section 11. (For simplicity, we restrict 
our  study  to 1-persistent and nonpersistent CSMA 
protocols only.) 

Second, in  this  paper, we consider a  solution to  the 
hidden-terminal problem which we call the busy-tone 
multiple-access (BTMA) mode. This is the  subject of 
Section I11 in which we give 1) a  description of the 
operation of BTMA  under a  nonpersistent protocol, 2) an 
analysis to  determine  the throughput,-delay  characteris- 
tics along with the effect of various  system  parameters, 
and 3) a discussion of some numerical  results. 

11. THE  HIDDEN-TERMINAL  PROBLEM 
’ Below, we shall describe the model and define an 
adequate representation for hidden-terminal configura- 
tions. Then we proceed with the analysis for throughput 
and delay.  Finally we shall consider some examples to 
which we apply  analytical  and  simulation  techniques. 

A. The Model 
We assume an environment consisting of a large  number 

of terminals  communicating  with  a single station over a 
shared  radio  channel. All terminals  are  in line-of-sight and 
within  range of the  station  but  not necessarily with  respect 
to each  other. All other  system  assumptions  introduced in 
Part I hold true.  The  total traffic source will be approxi- 
mated  by  an independent Poisson source with an aggre- 
gate  mean packet  generation rate of X packets/s. 

We characterize  a  terminal configuration with  hidden 
elements as follows. Let i = 1,2, - - ,M index the M ter- 
minals in  the population.  By definition, terminal i “hears” 
(is connected to) terminal j if i and j are within  range and 
in line-of-sight of each  other. To represent the connections 
among  terminals, we use an M X M square  matrix M 
such that  the element m i j  is 

1, if i hears j 

0, otherwise. 
nlij = 



1418 

Since two  terminals that hear the same  subset of the 
population  behave  similarly, it  is  advantageous to  parti- 
tion the population into several  groups  (say N , N  i: M )  
such that all  terminals  within  a  group  hear  exactly  the 
same  subset of termin,als in  the population. This  partition- 
ing is easily formed by  collecting all  terminals  with 
identical rows or columns in M into one group. We  now 
define a "hearing" graph  with N nodes and  make a one- 
to-one correspondence .between the nodes of the  graph 
and  the N groups just obtained.  A  link  between  two 
nodes k and 1 repiesents the fact that group k and group 1 
hear  each other,  aqd  this is easily determined by  the fact 
that  there exists a  terminal i in  group k that hears a ter- 
minal j in  group 1. 'This  procedure  provides  us  with the 
minimum  number df groups describing the configuration. 
Let h ( i )  be the  set of groups that group i can  hear. In  the 
sequel, we shall  jsolate  the case of independent  groups 
from the general  base of dependent  groups.  The former is 
characterized by the. absence of links in  the hearing  graph. 

We  shall  further+aKsume that each  group i consists of 
a  large  number of usersiwho collectively form an indepen- 
dent Poisson source.  yith  an aggregate  mean  packet 
generation rate X i  packets/s  such that EL, X i  = X. 

As in  Part I, we characterize the traffic as follows. Let 

,-j,.,-':.:. 
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B. Analysis 
We wish to  answer the following basic questions of 

interest. 
Question 1: Given an  input  pattern %, what is the 

channel capacity C(  %) ? An equivalent  question  is: Is a 
given set of input  rates S (U) achievable or does it  saturate 
the channel? 

Question 2:  For a given achievable set of input  rates 
S (%) , what is the relative  performance of the  various 
groups? 

We shall first treat  the simple case of independent  groups 
for both  the 1-persistent  and  nonpersistent CSRIIA, then 
we shall proceed with an approximate  analysis for the 
dependent  groups case under  a  nonpersistent  protocol. 

I7~dependent Groups Case: We first recognize that Si/Gi 
is merely the probability of success of an  arbitrary packet 
from  group i. This  quantity is a  function of the  traffic 
vector 6. By expressing Si/Gi for each i in  terms of s, we 
obtain  a  set of equations  relating the components of S 
to  the components of s. For a given S and  under  the 
system  and model assumptions stated  above,  the proba- 
bility of success of an  arbitrary  packet from  group i is 
given as follows. 

I-Persistent CSMA: 

Si = XiT. Under  steady-state  conditions, Si is the 
throughput of group i. Let S = Xl' = EL, Si; S is the 
total  throughput  and utilization of the channel.  Let 
S = (SI,S~,-..,SN). Let U = ( ~ I , U ~ , - * - , U N )  where u; = 
(S; /S)  ; U describes a '  direction in N-dimensional space. 
The capacity of the channel  along the direction % is 
defined as 

C(U) = max S 
J o<sg 

such that  the  set,  ofinputs determined  by the vector SU 
is achievable. In  other words, C(%) is the maximum 
achievable throughput 'or maximum attainable channel 
utilization, when for all i, the  input source of group i con- 
stitutes a  fraction ui of the  total  input source. In  addition, 
let Qi denote  the  mean offered traffic rate  (per T seconds) 
of group i. Let s = (G'1,G?,---,G'N) and G = EL, Gi. 

We  determined in  l'art I [l] the necessity of introduc- 
ing a  random  retransmission  delay X with  mean 3 to 
avoid  repeated conflicts. We  shall  further assume  here 
that 2 is the same for all  groups and  that Assumptions 
1 and 2 of Part I still hold true,  as follows. 

Assu?nption 1':;z is large  compared to  the transmission 
time T ,  so that tIie.interarriva1 times of the point processes 
defined by  the  start.  times of all the (new)  packets plus 
retransmissions  from  group i are of independent incre- 
ments  and exponentially  distributed,  with  mean  inter- 
arrival  time l/Gi. 

Psi = - = exp { G i ( l  - ?a) ) Si 
Gi 

Proof: By definition, a  packet  transmission is said 
to be i-successful if the  packet is free  from  interference 
caused by packets  from  group i. A  packet  transmission  is 
said to be totally  successful if and only if it is i-successful 
for all i ;  i = 1,2,. - - , N .  

Consider first the 1-persistent CSMA case. An arbitrary 
packet  from  group i is successful if the following two 
mutually  independent  conditions  are satisfied. 
el : The packet  transmission is i-successful. 
e2: The  packet is j-successful, for all j # i. 

(e ,  and e2 are  independent since we are dealing with 
independent  groups.) 

Consider for each  group i a time line which exhibits 
packet  transmissions  from  group i only (see Fig. 1 ) .  We 
observe on time  line i an  alternate sequence of busy and 
idle periods as defined in [l]. Moreover, because of the 
independence  among  groups  (completely disconnected 
graph),  this sequence is completely determined by  the 
traffic rate Gi. Condition el is satisfied with  a  probability 
equal to the  probability of success of a  packet in l-persis- 
tent CSNIA without  hidden  terminals when the traffic 
rate is Gi. It is given by [ 11 
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UNSUCCESSFUL I-SUCCESSFUL UNSUCCESSFUL 

TIME __-  I 
LlNEi  I 1 

- - -  - --  - 

BUSY PERIOD 

Fig. 1. 1-persistent CSMA: time line i. 

'same property,2 we have: 

Pr { the tagged  packet starts transmission  during the  last 

a seconds of a  busy period on  time  line .j 1 = a/ (1; + Bj)  . 
In  this  event,  the  probability  that  no  packets from groupj 
start t'ransmission during  the transmission time of the 
tagged packet is the probability of no transmission from 
group j in an interval (1 + x - a )  with x uniformly dis- 
tributed over the  last a seconds of the busy period and is 
given by 

Pr {e1] = 
[l + Gi + aG'i(1 + Gi + aGi/2)] exp { -Gi ( l  + 2a)  } 

Gi(1 + 2a) - ( 1  - exp { -aGi}) + (1 + aGi) exp { - Gi( 1 + a )  ] * 
(3) 

Consider now the  time line j corresponding to group j ,  j # i. dx 
Here  again, we observe an  alternate sequence of busy and [ exp { -Gj(l + x - ') - U 

idle periods denoted by B j  and Ij, respectively, com- 
pletely determined by  the  rate Gj. The average  busy  and 
idle periods are expressed as [I] = - [exp { - - ~ j ( 1  - a )  1 - exp { - C ~ I  . 1 

UCj 1 
1 I .  - - 

3 -  cj 

(4) On the  other  hand,  the  probability  that  the tagged  packet 
starts transmission  during an idle period is Tj / ( I j  + Bj) 

and  the  probability that no packets  from  group j start 
(Fi) transmission  during its transmission  time is exp { -G'j). 

Since the groups are  independent, we then have 

l'r {e,} = 
(l/Gj)[exp { -Gi(l - a )  } - exp {-Gill + I jexp  { -Gi] 

.i#i 1; + B j  

=rI 
(1 + aGj) exp {-2Gj} 

j+i Gj(1 + 2a) - (1 - exp { -aG'j}) + (1 + uGj) exp { -Gj ( l  + a )  } ' 

(8) 

where 

1 Bj = a - - (1 - exp { - u G j } )  (6) 
G'3 

and 

q0,j = (1 + uGj) exp { -Gj ( l  + a ) } .  (7) 

Our tagged  packet is j-successful if and  only if the following 
t,wo conditions  are satisfied. 

ai: The  start of transmission of the tagged  packet does 
not occur during  any transmission period (with the excep- 
tion of the  last a seconds of the  last transmission period 
of the busy period [see Fig. 11).  

@j: No packet  from  group j starts transmission  during 
the transmission  time of the tagged  packet. 

We know that,  by assumption 1', the  arrival of an 
arbitrary  packet, represents  a  random look in time. In  
1-persistent CSMA, the  start of transmission of the packet 
may  not correspond to  the  arrival of the packet since the 
packet  may  incur  a  pretransmission  delay in case the 
channel is sensed busy a t  its  arrival time. However, by 
assuming that  the  start of transmission possesses the 

Conditions e, and e, being mutually  independent, we 
have 

P s i  = - = Pr {e,) Pr ( G )  

in which we substitute  the expressions found  above to  

The proof for (2) is exactly  identical to  the one above, 
in which we have  the following expressions for the various 
quantities [ 11 : 

Si 
Gi 

get (1). 

B j = l + u + P ,  
- 1  I. - - 

3 -  cj 
1 P, = a - - (1 - exp { -aGj} j 

Gj 

Such an assumption is not needed in the  nonpersistent CSMA 
case since packets will not incur  pretransmission delays. In  that 
case the analysis will be exact. The comparison between results 
obtained from  simulation of the LLPoisson" model, ,to  be discussed 
in the following section, and those obtained  by  this analysis  (with 
a = 0.01) shows that  the effect of this assumption is not noticeable. 
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and 

Pr {ez] = TI exp { --Gj(l - a ) )  
, i f i  Gi( 1 + 2a) + exp { - aGj) 

Therefore 

P,; = = exp { - G i ( l  - 1 Si 

N 

* r I  

exp { -Gj( l  - a ) )  . Q.E.D. 
+I Gj(1 + 2a)  + exp { -aGj) 

Thus we obtain a set of equations  relating  the com- 
ponents of the  input vector S to  the components of the 
traffic  vector s of the form ’ = fi(G1,G2,’”,GN). (11) Gi 

For  a given input vector S, we can  numerically solve for 
G.. I1 i = 1, .  - - , N .  This we do by writing (11)  in  the form 

Gi = S;/ji (GI, * - ,GN) (12) 

and  by solving the  set of equations  iteratively;  starting 
with the initial  values 6 = S. If the  iterative procedure 
results in a  (finite) traffic vector s then  the  input vector 
is feasible. (We do not claim we can  prove existence and 
unicity of the solution but  it has  been our experience that 
S, = ,  S is a good starting solution and  simulation results 
always  agreed  with the results  obtained by  the  iterative 
procedure  whenever a finite  solution could be .reached. 
Lack of convergence is assumed whenever a certain  preset 
maximum  number of iterations is exceeded.) Thus,  the 
convergence of the  iterative procedure  determines the 
feasibility of the  input vector S and  the final values 

missions and schedulings a packet froin group i undertakes 
be’fore success. This will be  our  measure of relative per- 
formance of the various  groups. Some simple examples are 
treated  in  the following section. . ,,  

Before we proceed with the case of dependent  groups; we 
consider here the particular case in which the N indepen- 
dent groups are  identical, i.e., 

Gi/Si;  i = 1,2, * - - ,hi give the average  number of trans- 

si = s, Vi 

Gi = 8, vi. 

Equations (1)  and (2) reduce to, respectively, 

to  the ALOHA access mode. Indeed it is easy to see from 
(13) and (14) that for both protocols 

S - ---f e--26 
F. ci .V-w 

the probability of success of a  packet in ALOHA mode! 
The  Case  of Dependent Groups: The dependence among 

the groups  renders the  determination of the sequence of 
idle and  busy periods relative to a  group,  say i, rather 
difficult. Moreover  this sequence is a  function of the 
entire  set { Gj,j E h ( i )  ]. Thus, no tractable analysis  is 
yet available for the l-persistent  CSMA  mode.  However, 
an approxim,ate model is presented  here for the non- 
persistent CSMA protocol. For  this we make some fairly 
strong  assumptions of statistical  independence  among the 
groups as well as exponential  distributions for the inter- 
point  times of various processes. (We claim that such 
assumptions  are  particularly  valid when the load on the 
channel is low). Simulation  techniques are considered in 
the next  section allowing us to verify the  validity of the 
approximate models. 

Consider again the time axis on which we represent 
packet  arrivals  and  packet  transmissions.  Time  line i, 
relative to group i, is obtained  by  deleting  from  the  time 
axis all  packet  transmissions belonging to groups other 
than i; that is, time line i exhibits  packets  from  group i 
only. As discussed above, we can  observe  on time  line i an 
alternate sequence of idle and  busy  periods  (see  Fig. 2) .  
The simplicity in studying  this  protocol is mainly  due  to 
the  fact  that  any  busy period consists of a single trans- 
mission period [l]. In  nonpersistent  CSMA,  when  a  ter- 
minal becomes ready it senses the channel. An arrival 
corresponds then to  a sense point. A sense point will result 
in  an  actual transmission if the channel is sensed idle, 
otherwise the sense point’ (or arrival) is  said to be blocked. 
Furthermore, by definition a sense point is said to be 
j-unblocked if the sense point is not blocked by  packet 
transmissions  from  group j .  

Consider time  line i for example and  let Gi, as  before, 
denote the total rate of sense points  generated by group i. 
The point process defined by these sense points  is  assumed 
to be of independent  increments  and Poisson (see Section 
II-A).  Let Gi‘ be the  rate of sense points which are 
+unblocked for all .i; j # i; i.e., Gi‘ is the  rate of sense 
points which did not find the channel  busy because of the 
transmission of a packet  from  group j ;  j # i. Obviously, 
.i must  then belong to  the subset h ( i ) .  The independence 
assumption that we make a t  this  point  can be stated as 
follows. 
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U N S U C C E S S F U L  

T R A N S M I S S I O N  

SUCCESSFUL a  busy  period of time  line j and is expressed as r P E R I O D  7, f A ~ ~ ~ ~ ’ o ~ 7  Ij  + a 1 + aGjl 
~- 

TIME LINE^ t-111 . I 1 ,  Bj + Gj’(1 + 2u) + exp { -aGj’) * 

- t ‘L: 1 a) By  the independence 
assumption we then establish (16). 

BUSY I D L E  BUSY 1 + aGj’ 
P E R I O D   P E R I O D   P E R I O D  Gi’ = Gi n 

1 j e h ( i ) ;  jzi Gj’(1 + 2a) + exp { - aG/ } * 

Fig. 2. Nonpersistent CSMA: busy and,idle periods on time  line i. 

the  state  (busy or idle) of any  time  line j; j # i, is of 
independent  increments, and is Poisson. That is, the point 
process is  completely  determined  by the  rate Gi‘. 

We recognize that this  statement would be true only 
if all  groups were independent.  Nevertheless it is valid 
when the  system is lightly  loaded (at  any  rate, simulation 
is used to check the validity of results  obtained  under 
these  assumptions) ; if P b i  is the  probability that a sense 
point  on  time  line i is blocked by  packet  transmissions 
from and  group j; .i # i, then we can  write 

G i ’  = Gi(1 - P b i ) .  

The  introduction of Assumption 2’ simplifies the problem 
yielding approximate relationships  between the various 
quantities defined so far. 

Under the model  assumptions and  the  additional As- 
sumption l’, the relationship  between the components of s 
and the components of $j is  given  by the following system 
of equations : 

n exp { -aCj’) II exp { -Gk’(l - a) } 
j r h ( i )  kgh(i) 

Si = Gi (15) 
N n [Gl’( 1 + 2a) + exp { -aGl’]] 
1-1 

where 

Pvoof: Consider  time  line i on which we observe an 
alternate sequence of busy and idle  periods (Fig. 2) .  By 
Assumption Y ,  this  sequence is completely  determined by 
the  rate Ci‘. The average  busy  and  idle  periods  can then 
be expressed as [l] 

B i  = I + Pi‘ + a 

I. - - - 1  
Gi‘ 2 -  

where 

1 Pi’ = a - 7 (1 - exp (-aGi’)). 

By the Poisson assumption, an  arbitrary sense point 
represents a random look in time. The  probability that  an 
arbitrary sense point  from  group i is j-unblocked, j # i, 
is the probability that a random look at  time  line j falls 
either  in  an idle period or during the first a seconds of 

Gi 

Consider now an  arbitrary  (unblocked) sense  point from 
EFOup i. For this to result  in  a totally successful transmis- 
sion, the following conditions  must be simultaneously 
satisfied : 

ai The sense-point  corresponds to  the  start of an i-suc- 
c e d d  transmission. 

a: The tagged  sense  point  (which is j-unblocked, 
V j  E h ( i )  ; j # i) occurs  during an idle  period of time 
line j ,  V j  E h ( i )  ; j # i. 

e:  There  are no arrivals  from  any  group j E h ( i )  , j # i 
during  the first a seconds of the tagged  transmission. 

a: The tagged  packet is k-successful, for  all k 4 h (i) . 
It is  easy to see that,  as in (9) , we have: 

Pr { a )  = 
exp ( -aGi’] 

Gi’( 1 + 2a) + exp { -aGi’) . (17) 

On the  other  hand, knowing that  the tagged  packet is 
,+unblocked, .i E h ( i )  ; j # i, we have 

Pr (@/packet is j-unblocked, .i € h ( i )  , .i # i) 

1 /Gj’ 
= I I  

j t h ( i ) ; j # i  ljG/ a 

and 

Pr { e )  = n exp { -aGj’).  (19) 
jeh(i); i#i 

Moreover,  similarly to  (IO), we have 

By the independence  assumption, we have 

Si = Gil l+  {a}.Pr (@}.Pr (e}.Pr (a}. 
Using the expressions found  in (17) , (18) , and  (20)  and 
the expression for Gi’ given by (16) , we get  (15). Q.E.D. 

Before we proceed ‘with the examples, let us consider 
again the case of N indeperident and identical  groups to  
which we apply  (15)  and (16).  In this case, h ( i )  = { i) ; 
V i  = 1,2, - - , N .  Denoting as before Gi = g, Si = s; V i ,  
and N s  = S, Ng = G, (16) reduces to Gi‘ = Gi = 9; V i ,  
and (1.5) reduces to 

which is identical to  (14). 
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C .  Examples 

In  the present  section, we consider some examples to  
which we apply the analytical  results found in Section 
11-B. Simulation  techniques are also used 1) whenever 
the analysis  is  intractable, and 2) to check the validity 
of the assumptions on which the analysis was based. The 
simulation model is based on  the same  system  assumptions 
as  in Section 11-A. Among these, in  particular, we assume 
that  the  input processes for thevarious groups  are  Poisson. 
However the assumptions  pertaining to  the characteriza- 
tion of the offered traffic (see Assumption 1’) and  the 
independence  assumptions  introduced for analytic  tracta- 
bility  are all relaxed. For  the various examples simulated, 
the comparison of results  obtained  from  simulation and 
the results  obtained from the  analytic model match  very 
well. In  the present  section, we also draw  various con- 
clusions about  the effect hidden  terminals  have on the 
performance of  CSRIZA. For the following examples and 
numerical  results, we restrict ourselves to a = 0.01. 

Independent  Groups  Case: A Symmetric  Configuration: 
We  have  already considered the example in which the 
population is partitioned  into N groups of equal size. 
The (S,G) relationship  is  given by (13) for 1-persistent 
CSMA  and  by  (14) for the nonpersistent  protocol. 

I n  this example, for each termina.1 there exists a frac- 
tion p of the population which is hidden,  namely p = 

[ ( N  - 1)/N] (>0.5). The channel  capacity for various 
values of N is  plotted  in  Fig. 3. Note  that  the channel 
capacity experiences a drastic decrease between the  two 
cases: N = 1 (no  hidden  terminals, p = 0) and N = 2 
( p  = 0.5). For N >_ 2, slotted ALOHA performs better 

’ than CSMA.3 This decrease is more  critical for the non- 
persistent  CSMA than for the 1-persistent CSMA as 
shown in  the figure. For N > 2, the channel  capacity ,is 
rather insensitive to N and approaches  pure ALOHA for 
large N ,  as was shown in Section 11-B. 

Independent  Groups  Case:  Com,plementary  Couple  Con- 
Jiguration: The previous  example  did not show the  effect 
of a small  fraction of the  population being hidden  from 
the rest. In  this example the population consists of two 
independent  groups ( N  = 2) of unequal sizes such that 
U = (all - a )  ; t,hat is, 

S I  = as 
sz = (1 - a ) S .  

Equations  (1)  and (2) are readily ap.plicable. The channel 
capacity is plotted  versus a for both CSMA  protocols in 
Fig. 4. Here  again we note that  the capacity decreases 
rapidly as a increases from 0. This decrease is much  more 
critical for the nonpersistent than for the 1-persistent. 

In  answering Question 2 ive note that a good measure 
of delay is given by Gi/Si, the average  number of transmis- 
sions and scheduling of a packet  until success. We  note 
that  the larger  group  (i.e., the group  with the higher 
a’ggregate input  rate) performs much  better  than  the 
smaller one. (See [ 2 ]  for further  details.) 

Recall that a is assumed constant  and equal to 0.01. 

1 

.y t 
1: h INDENDENT GROUPS 

a = 0.01 1 
NON-PERSISTENT CSMA 

1 PERSISTENT-CSMA 

SLOTTED  ALOHA 

0 I I I I I I I I I 
1 2 3 4  6 7 6 9 10 11 

NUMBER OF INDEPENDENT GROUPS N 

Fig. 3. Independent groups casechannel  capacity versus the 
number of groups. 

1 

COMPLtMtNTARV COUPLE 
a = 0.01 
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YI z 

SLOTTCD ALOHA 

2 PURE ALOHA 

.1 t 
0 I I I I I 

1 0 6   1 0 5  10-4 1 0 3  10-2 1 0 1  .5 1 

Fig. 4. Complementary couple configuration-channel capacity 
versus 01. 

Dependent  Groups  Case: A Symmetric  Con$guration: 
Let us now consider the  situation  in which the population 
is partitioned  into N groups of equal size such that for 
each  group  all but one group  are  within  sight. The  graph 
representation of such a configuration is shown in Fig. 5 .  
Obviously, this  situation falls within  the case of depen- 
dent groups, and corresponds to  the instance  in which, 
for each  terminal,  there is a  fraction p of hidden  terminals 
such that /3 < 0.5, namely p = ( l /Nj .  Simulation  tech- 
niques have been employed to  study  this  instance  under 
a 1-persistent  CSMA  protocol. I n  Fig. 6, we show the 
relationship between the  total  throughput S and  the  total 
traffic G for various  values of p. We  note  again that  the 
higher the  value of p is, the smaller is the channel  capacity. 
We further  note  that for a  given  achievable throughput X, 
the larger p is, the  larger  the traffic rate G is and hence 
the smaller is the  probability of success of a  packet,  and 
the larger its average  number of transmissions is. 

Dependent  Groups  Case:  The  “Wall”  Configuration: Con- 
sider  a uniform distribution of terminals over a  circular 
area, the  station being located at   the center. All terminals 
are within  range of each  other, but  the presence of a  “wall” 
(hill)  as  displayed in Fig. 7 (a) causes some terminals to 
be hidden  from  others.  A  terminal TO at, an angle a0 ((YO < 
180”)  from the wall can  only  hear  terminals in  the region 
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Fig. 5.  The hearing graph of a symmetric  dependent groups con- 
figuration. 
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6. Symmetric dependent groups configuration-throughput 
versus  channel traffic. 

(b) 
Fig. 7. The wall configuration. 

(0,ao + BOo). To  study a  continuous problem such  as 
this, we examine the discrete  approximation  obtained by 
breaking up  the uniform population into snlall  sectors, 
each  sector considered then as  a  group. The smaller the 
sectors  are, the more precise the approximation becomes. 
The problem is solved numerically below for N = 10; 
that is, we partition the population into 10 equal  sectors 
as shown in Fig. 7(b).  In  the  latter, we note that, for each 

group i, there exists a  group i diametrically  opposite  such 
that a terminal  in  group i can only hear  a  fraction of the 
terminals in group i. Therefore, the solution to  the con- 
tinuous problem can be bounded by  the following two 
cases. 

Case i-i ( h ( i )  : This gives a lower bound on CSMA 
performance; that is a lower bound on channel  capacity 
or upper  bound on the channel  traffic  and on the average 
number of transmissions and schedulings. 

Case 2-i E h , ( i ) :  This gives an upper  (i.e.,  optimistic) 
bound on the performance of CSMA. 

The hearing  graph  representations corresponding to  the 
two cases are shown in Fig. S. The  analytic results and 
simulation  results were compared for the case i 4 h(i) 
for values of a = 0.01 and 0.1 (see [a]). The close match 
again  validates the  analytical model. The results  obtained 
by  the  latter  are shown in Figs. 9 and 10. In  Fig. 9 we plot 
the  total  throughput S versus the aggregate rate G. The 
channel  capacity is shown to be bounded by 0.37 2 C 5 
0.44 ( a  = 0.01). The existence of the wall decreased the 
channel  capacity by a  factor  approximately  equal to 2. 
Similarly, in Fig. 10 we plot the upper  and lower bounds 
on the overall  average  number of transmissions  and 
schedulings per packet. 

Remark: The  set of equations  relative to  the dependent 
groups case given in Section 11-2 provides us with an 
approximate  solution based on the independence Assump- 
tion 2’. Simulation  results  agree  with  those  obtained by 
the model for the examples considered so far. However, 
there  are cases where the independence assumption is not 
satisfied and  the model inapplicable.  Consider, for exam- 
ple, the symmetric  configuration  depicted in Fig. 5 .  
Assume a = 0 for simplicity a.nd let g’ = Gi’, g = Gi, 
and s = Si; V i .  From (15) and (16) we have 

91 = R ( W )  
1 N-2 

If we  now let N -+ s -+ 0, 9 + 0, 9‘- 0 such that 
N s  = S,  Ng = G, and Ng’ = G’, then we get 

S = G’ = Ge-S. (21) 

Such  a  result  is  certainly wrong in  the  limit since, for this 
particular case, we expect to rcach the nonpersistent 
CSMA result  with no hidden  terminals,  namely [l] 

G 
1 + G ’  

E = -  (22) 

This  is basically due to  the independence  assumption 
introduced  above. However, (21) and (22) are  equivalent 
in  the case of low channel  utilization, since then approxi- 
mating e-s by 1 - S,  (21) reduces to  (22). 

In  summary, for the various  particular  configurations 
that were considered, it is to be  noted that  the perfor- 
mance of carrier sense is  badly  degraded by  the existence 
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Fig. 9. The wall configuration-throughput versus offered channel 
traffic. 

of hidden elements. Fortunately,  in a single-stat.ion en- 
vironment., the  hidden-terminal problem  can  be  eliminated 
by dividing the  available  bandwidth  into  two  separate 
channels: a busy-tone  channel and a message  channel. 
This  solution is the  subject of the following section. 

111. BUSY-TONE  MULTIPLE-ACCESS  (BTMA) 

A .  System  Operation  and Protocol. 
The  operation of BTMA  rests  on  the  assumption  that 

the  station is, by definition, within  range  and  in line-of- 
of-sight of all  terminals.  The  total  available  bandwidth  is 
to be  divided into  two  channels: a message  channel and 
a  busy-tone (BT)   ~hannel .~  As long as  the  station senses 
(terminal)  carrier  on  the incoming  message  channel i t  
transmits  a (sine wave)  busy-tone signal on the busy-tone 
channel. It is  by sensing carrier  on  the  busy-tone  channel 

suggested by Fralick [3]. 
The busy-tone  concept in the  context of packet  radio was first 

L I 

- 
WALL CONFIGURATION - 

I 

THIS  RANGE) 
(TRUE  SOLUTION  IN 

0 0.2 0.4 0.6 0.8 1 

S (THROUGHPUT) 

Fig. 10. The wall configuration-overall average number of sched- 
ulings and transmissions. 

that  terminals  determine  the  state of the message  channel. 
The  action  pertaining  to  the  transmission of the  packet 
that a  terminal  takes  (again)  is prescribed by  the  par- 
ticular protocol being used. In  this section, we shall 
restrict ourselves to  the nonpersistent protocol because 
of its  simplicity  in  analysis  and  in  implementation, as 
well as  its  relatively high efficiency as  shown in  Part I. 
In  CSMA [l], the difficulty of detecting  the presence of 
a signal on the message  channel  when this message  used 
the  entire  bandwidth was minor and  therefore  was 
neglected. It is  not so when  we are concerned with  the 
(statistical)  detection of the  (sine  wave)  busy-tone 
signal on  a  narrow-band  channel.  The  detection  time, 
denoted  by t d ,  is  no  longer negligible and  must  be a.c- 
counted for. The  nonpersistent BTRiIA protocol is similar 
to  the  nonpersistent CSMA protocol [l] and corresponds 
to  the following. Whenever  a terminal  has  a  packet  ready 
for transmission, i t  senses the  busy-tone  channel  for t d  

seconds (the detection  time) at  the end of which i t  decides 
whether  the busy-tone signal is absent  (in which case i t  
transmits  the  packet) ; otherwise it reschedules the  packet 
for transmission at some later  time  incurring  a  random 
rescheduling  delay. At  this new point  in  time, i t  senses 
the busy-tone  channel and  repeats  the  algorithm. In  the 
event of a conflict, which the  terminal  learns  about  by 
failing to receive an acknowledgment  from the  station,  the 
terminal  again reschedules the  transmission of the  packet 
for some later  time,  and  repeats  the  above process. 

Of interest  to  this  paper is first, the  determination of 
the  channel  capacity  under  a  nonpersistent  BTMA 
protocol and second, the  throughput  delay  characteristics 
of the  latter.  The  total  available  bandwidth being the 
limiting resource, the problem then reduces to selecting 
the  system  parameters  in  order  to achieve the  best  system 
performance. For this analysis we make  the same  assump- 
tions  as  in  Part  I. While the effect of noise  is assumed to 
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be negligible on  the message channel, we do  account for 
it in  the  (narrow-band) busy-tone  channel (See Section 
111-B). T is the one-way propagation  delay to  (and 
from)  the  station.  Each packet is of constant  length 
requiring T ,  seconds for transmission  on the message 
channel.  We  let S, = AT,. Let J. be the fraction of the 
bandwidth assigned to  the busy-tone  channel. The overall 
channel  utilization S is 

s = ( 1  - J.)S,. 

Let y denote the mean offered traffic rate.  (This is the 
rate of sense points since each  arrival corresponds in this 
protocol to sensing the busy-tone channel before taking 
an action.) In  Section 111-B the problem of detecting 
a  sine wave signal on  a  narrow-band  channel is examined 
and  the effect of various  system  parameters is charac- 
terized. 

B. Signal  Detection 
The detection of the busy-tone  signal is the problem of 

detecting  a signal of known  form in  the presence of noise. 
The useful signal is  a  given  function  with some unknown 
parameters,  namely,  phase  and ampl i t~de .~  However the 
observation  (detection)  time  is  usually  small compared to 
the “fluctuation time’’ of these  parameters,  and  the un- 
known  phase  and  amplitude  can be regarded as  constant. 

The problem of detecting a signal in a  background of 
white  Gaussian noise is a classical statistical problem 
involving the choice of one hypothesis  from two mutually 
exclusive hypotheses. This  has been extensively studied 
in  the  literature [4]. The  quality of the decision can  be 
characterized by  the following two  probabilities: 

D Probability of correct  detection (in presence of the 

F Probability of incorrect  detection or false alarm. 

Again let. t d  be the observation  time, i.e., the  width of the 
window over which the channel is observed in  making  the 
decision. If p l d  is the signal-to-noise ratio (SNR) when 
the signal  is  present  over the entire window td, and rs 
is the  optimum threshold of the  statistical  detector,  then 
for the usually assumed Rayleigh  channel, it  can be 
shown that [4] 

signal) 

F = exp ( - r*2 / t2p td )  

r* = ( -2ptd log F ) 1 / 2 .  (23 ) 

That is, for a given  observation  time td and a desired false 
alarm  probability F ,  the  optimum threshold r* can  be 
determined  from (23). 

In  this case (i.e.,  when the useful signal is present  over 
the entire window) , the  probability of correct  detection is 
given by [4] 

we assume it  to  be of unknown  amplitude. In  the case of fixed 
Because of the mobility of terminals, the signal  fluctuates. Thus 

terminals, we may idealize the problem to be that of detecting a 
signal with known amplitude  but unknown  phase. 

frequency window. 
Ratio of the signal  energy to  the noise energy  in the time- 

ENVELOPE DETECTOR 
+ 

BOX INTEGRATOR 
+ DECISION ---+ AND - FILTER 

THRESHOLD 

Fig. 11. Block diagram of the busy tone signal  detector. 

- - F l / ( l + ’ t d ) .  (24) 
Equation (24) rests  on  the  fact  that  the SNR of the 
received useful signal during  the observation  time  is 
actually p t d .  In  the following paragraph we investigate the 
(transient)  situations where the signal may  be present 
during  only  a  fraction of the observation window. 

Transient  Behavior: The  detector at   the receiver consists 
mainly of a  filter, an integrator,  and  a  threshold decision 
box (see Fig. 11) .  Assume the  step response of the busy- 
tone  detect filter is exponential [3]; the  amplitude at 
time t for the  output of the busy-tone filter is then7 

AnTv( t )  = Amax(l  - e t / k )  ( 2 5 )  

where Amax is the maximum  amplitude  and k is the filter 
time  constant. If we assume [3] that  the same  peak power 
is used for the  busy  tone as for the message on the message 
channel, then 

A m a x  = Am 

where A, is the  amplitude of the message signal  on the 
message channel. Since the energy of a signal is the  integral 
of its  squared  amplitude (which  equals (A2 t /2 )  for a 
sinusoid of amplitude A and  duration t ) ,  we define the 
SNR as  the  ratio of the signal  energy to  the noise-energy 
and express it as 

A2 
p = -  2NoW 

where W is the  bandwidth of the channel  under considera- 
tion  and No is the (assumed  white) noise power density. 

Let pm be the SNR of the message on the message 
channel  required for suitable  operation  (typically p m  = 

10). Then from the  last equation, it is clear that 

A,,, = A ,  = (2NoWmp,)”2 
and 

A n T ( f )  = [2iV,WBTp(t)]1/2 = (2N0Wmp,) l l 2 (  1 - e-t/k).  

Taking the time  constant IC to be one half of the inverse 
of the busy-tone channel  bandwidth  and recalling that 9 is 
the  fraction of the  total  bandwidth W assigned to  the 
busy-tone channel, we have  the following function 
defining the SNR p ( t )  on the busy-tone  channel : 

1 - J .  
~ ( t )  = pm- 9 

( 1  - exp ( -2J .Wt] )2 .   (26 )  

sumed  to  be present. 
At  time t = 0, the filter is just  turned on, and  the signal is as- 
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Fig. 12. D(t)  for an isolated busy tone signal of length T. 

Particularly 

As the st.arting  time of a busy  tone is unpredictable,  the 
busy  tone  may  not  be present  during the entire window 
of td seconds. The resulting SNR is a  function of the  time u 
over which the busy-tone  signal  is  present [see (26)]. By 
the  same  token,  the  probability of proper  detection  is also 
a function of the  time over which the busy-tone signal is 
present. 

Consider now a signal starting at t = 0 and  terminating 
at t = T .  Let D ( t )  be the probability of correct  detection 
at time t after  having observed the channel  over td seconds 
( t  is the time at which the decision is made). D ( t )  is 
determined by [4] 

D ( t )  = ~ l 1 / 1 1 + d ~ ) I l  ( 2 8 )  

where 

t ,  if 0 6 t < t d  

if t d < t <  T 
I 

= 1 t d l  

( T - - l + t d ,  if T < t < T + t d .  

For t > T + td, the  probability of false alarm is F .  D ( t )  is 
sketched in Fig. 12. A detailed graph of D ( t )  for 0 < t < td 
can  be seen in Fig. 13 in which we plot, for various  values 
of F and #, the function 

D ( v )  = F’~1/11+fi(u)l~, v E [O,m] 

where p ( v )  is  given in (26). ( D ( v )  here is the probability 
of correct  detection if the useful signal  is  present  over 
v seconds.) For  very large v, namely when v -+ 00, the 
probability of correct  detection reaches an asymptotic 
value  equal to 

D ( v )  -.+ fi’(l+l(l--$)/+lwn)-l. 

v-. m 

As usual, the larger F is, the  better is the probability of 
correct, detection. It is interesting to note that when v in- 

W =  100 kHz 

- e =  01 

10 20 30 40 50 100 150 200 zm 300 
Y IMICRO SECONDS1 

Fig. 13. Probability of correct detection D(v) .  

creases from 0, D ( v )  increases quite  rapidly reaching its 
asymptotic  value for relatively  small v. Moreover, this 
increase is faster for larger  busy-tone  bandwidth  (larger 
#) . A more complex situation occurs when  two  busy-tone 
signals are  separated  by a  gap  shorter than td. The window 
now can  overlap over two  busy-tone signals. Let t = 0 
be the time at which the first  signal  terminates and t, be 
the gap  between the two signals. D ( t )  for various  values 
of t ,  is sketched in Fig. 14. In  the following section further 
approximations are introduced to avoid  dealing  with  these 
complex situations.  The approximations are checked to 
have a negligible effect on  the  evaluation of the system 
performance. 

C .  Throughput Analysis 
Let us first summarize the notation in use: 

7 One-way propagation  delay. 
b, Number of bits per  packet. 
W Total  bandwidth available. 
# Fraction of W assigned to  the busy  tone channel. 
T, Transmission time of a  packet on the message 

channel; 

y Rate of the offered channel traffic (in  packets/s) . 
G Normalized rate of offered channel traffic (i.e., 

t d  Detection  time. 
F The false alarm  probability. 
D ( t )  Probability of correct  detection  given the signal 

G = y T , ) .  

is present for t seconds. 

We wish to solve for the channel  capacity,  given  the  system 
parameters F,#,W,b,,T,td. This we do by solving for S in 
terms of y and  othcr  system  parameters.  The channel 
capacity is then found by maximizing X in respect to y. 

Contrary  to  the CSMA modes the  fraction of the popula- 
tion which decides to  transmit is a function of time. The 
analytical  approach consists (as  in  Part I [l]) of iden- 
tifying the  busy  and idle  periods and of determining the 
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Fig. 14. D(t)  for various values of the gap t, between two COII- 
secutive busy tone  signals. 

condition for a successful transmission over the busy 
period. 

As stated above, to  keep the analysis simple, some 
approximations will be made yielding a lower bound  on 
throughput.  Corresponding  numerical  results  are  presented 
and discussed in  the following section. 

Under stationary conditions  and the model assumptions, 
a lower bound  on the channel  utilization Xi is given by 

where the  quantities B,f,nz(O,T,) are defined in  the fol- 
lowing  proof in (42),  (46), and (31),  respectively. 

Proof: Since a ‘terminal senses the busy  tone  channel 
for t,i seconds before deciding to  transmit,  an  arrival is not 
effective, as far as the channel  operation is concerned,  until 
td seconds following its  arrival  time. To view the occurrence 
of events  in  this access mode more easily, we consider the 
Poisson arrival process to be shifted td seconds in time, 
bearing in  mind  that  the  terminal has  already observed 
the channel for t,i seconds. The busy-tone signal emitted 
by  the  &ation is, as seen by  the  terminals, shifted in time 
by 27, a round-trip  delay to  the  station  (time  until  the 
station hears the transmission) and back  (time  until  the 
busy  tone from the  station is heard by  the  other  terminals). 

If we let y (packets/s)  denote the offered traffic,  the 
rate of transmission of packets a t  any  time t is a ( t )  y 
such that 

BT CHANNEL 

unununun~n~n~nununun~Aununun~f 

MESSAGE I ~ 

CHANNEL I i I I I I 1  
I 

I 1 - Dt,,  if the busy-tone signal is present 
during  the  entire observation 
window 

I 

CY(t) = I 1 - F ,  if the busy-tone  signal  is  absent 
during  the  entire window 

1 - D ( v )  , for the case when the busy-tone 
signal is only present over IJ s, 
21 5 td 

where D ( t )  is the probability of correct  detection a t  time t 
and F is the false alarm probability. That is, at any time t 
there is a  fraction CY ( 2 )  of the population which decides to 
transmit. 

Contrary  to CSRILA, an arrival  in  the middle of an on- 
going transmission  has a nonzero probability (1 - D ( t ) )  
of transmitting;  thus, a busy period (period of time over 
which the channel is continuously  used)  can now  exceed 
T ,  + 27. 

Let tpl be the  time at  which the transmission of the first 
packet of a  busy period starts.  The busy-tone  signal of 
such  a  busy period starts 27 seconds later,  at time tp1 + 27. 
The  time  dependent packet  transmission  rate CY ( t )  y depends 
on the  length of the  gap between the  start of the busy-tone 
signal corresponding to  the current  busy period and  the 
end of the busy-tone signal corresponding to  the previous 
busy period. Let  us assume t ,  > td i- 27 for the present 
time.  (This corresponds to  the worst yet  “cleanest” case.) 
Without loss of generality,  let tpl = 0. From  the previous 
section, we can easily derive a ( t )  as follows (see Fig. 15) : 

I 1 - F  O < t 5 2 7  

G ( t )  = 1 - D ( t ) ,  27 < t 5 27 + td (30) 

1 - n ( t d  + %), 27 + td < t 5 T m  

where 
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Let 
2 2  

m ( a l a )  = a ( t )  dt. (31) 

The first  packet  in  the  busy  period  is  successful if there is 
no arrival  from  the nonhomogeneous  Poisson arrival 
process  with rate a ( t )  y during  the  entire  transmission  time 
of the  packet.  The  probability of success is given by 

P, = exp ( - y m , ( O , T m ) ) .  (32) 

To find the  channel  throughput, we use a “cycle”  analysis 
[SI. For this, we must  calculate  the  average  busy  and idle 
periods. 

Let us first find the  average busy  period.  Let Y be the 
random  variable  defining  the  time  until  the  last  arrival 
during  the  packet  transmission  time T ,  (see Fig. 15). 
It is  easy  to see that: 

Pr { Y 5 y } = Pr  {no  arrival  in ( y,T,) ) 

= ~ X P  [ - y m ( ~ , T r n ) l  

Pr { Y = 0 )  = exp [ -y in(O,T,)] .  (33) 

The  Laplace  transform Y* (s) is defined by 

~ * ( s )  A J  exp { - s y ~  d P r  { Y  I y } .  
T ,  

0 

From  t&s we obtain 

Y*(s) = Pr { Y  = 0) 

+ [’T~XP { - s Y }  ~ X P  {-ym(Y,Tm) 1 dm(y,Tm) 

= exp { -y?n(01Tm) 
T m  

+ J ,  y a ( Y )  exp i - ~ Y I  exp { -rm,(Y,Trn)  dy- 

(34) 
Let 

@ = l - F .  (37) 

The  busy period is equal to: 

I Tm + Y, if no arrival occurs  in the period 
of time ( T , ,   T ,  + Y )  

T ,  + X, + B’, otherwise 

where  (see  Fig. 15) 1) XI is the  random  variable defining 
the  time elapsed from t = T ,  up to  the first  arrival  in 

(T,,T,,, + Y )  , and 2) B‘ is the  length of a  busy  period 
when the Poisson arrival process  is homogeneous with 
rate Ay. (B’ is the  “sub-busy” period  (see [SI) created 
by  the first  arrival  in (T , ,   T ,  + Y )  . Beyond t = T,, 
a ( t )  = A.) 

Conditioning  on Y = y ,  the  average  busy period is 
given by 

The expected  value 21~ (defined as the  expected  value 
of XI conditioned  on Y = y )  is  derived  as follows. First, 
we have 

Pr {Xl 5 z/some  arrival  occurred, Y = y 1 = 
1 - e - b z  
1 - 

Therefore, 

1 ye-Aru 
- 

A y  1 - * 

The expected  busy  period 2? is  given  by 

(39) 

Indeed, we have 

B‘= 1 Tm, with probability e-AyTm 

X z  + B’, with  probability 1 - e-ArTm 

where X2 is the  time elapsed  from the  start of transmission 
of a  packet  until  the  start of transmission of the first 
overlapping  packet. z2 is  obtained  from ZIu (37) by 
simply  setting y = T,. 

The  average busy  period B,, conditioned on Y = y, is 
given by 
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1 
AY 

- - T + - @rTm m (1 - e-A’”). 

Removing the  condition on Y, we get 

1 
A 7  

= T ,  + -eArTm(l - Y*(Ay)). (42) 

Let us now calculate  the  average idle  period.  Let t = 0 
now denote  the end of the busy  period. It i s  easy to see 
that  the  transmission  rate, which we denote  by a’( t )y ,  is 
defined by  (see  Fig. 16) 

I - D(td + 27) = A, O < t 5 27 

d ( t )  = 1 - D ’ ( t ) ,  i 
11 - F = 9, t 2 27 + t d  

where 

o ’ ( t )  = Fl1/[1+r’(t)ll~ 

Denoting  by I the idle  period, we have 

Pr {I > x )  = Pr  [no  arrival occurs  in ( 0 , ~ )  } 

= exp C-7Ym’ p 1 4  1 (44) 
where 

The  average idle  period  is  given by 

(45 1 

I = irn exp [ -ym’(O,z) } dx. (46) 

The  exact expression* for the channel throughput 
depends  on  the  distribution of the  gap tu. Indeed, D ( t )  as 
well as (Y ( 1 )  y = [l - D ( t )  3y depends  on t ,  as shown in 
Fig. 14. However, to keep the  analysis  fairly  tractable, 
we choose to give a lower bound  on  channel throughput 
by  considering a( t )  y as determined  in  the  ‘worst case 
( tu  >> td) , that is as  given  in (30). Under  this  condition, 
the first transmission  in  the  busy period  is successful with 
probability 

P8 = exp (-Tm(O,Trn)) 
and  the expected period of time 0 that  the channel  is 

? A A A A A / ,  BT CHANNEL 

! 

MESSAGE CHANNEL 

- j  I 
I ’  
, I  

Fig. 16. BTMA-a’(t) at the  start of an idle period. 

transmitting  packets  without  interference  during  a cycle 
(defined  as a busy period plus  an  idle  period)  is 

O = T ,  exp [-ym(O,T,)]. 

Therefore,  the lower bound  on  throughput is  given by 

Q.E.D. 

“Upper bound’’ on S: To check the  validity of the 
lower bound  provided  by (29), we consider the  fraction f 
of busy  periods for which the  gap t ,  is less than ta + 27. 
Indeed, it is for these cases that a ( t )  is  overestimated  by 
the expression  given in (30) , and could be  underestimated 

The  probability  that  the  gap t u  is  less than t d  + 27 is 
by 1 - D, ,  = A. 

readily  given by 

f = Pr { t u  5 t d  + 27) = I - exp {-ym’(O,td + 27)). 
(47) 

The  smaller f is, the closer is the lower bound  on S to  the 
exact  expression. On the  other  hand,  an  “upper bound’lg 
on S is obtained  by  underestimating a ( t )  by A for a 
fraction f of the  busy periods. That is, a lower bound  on 
the expected  busy  period  is  obtained by 

where Y1* (s) is the Laplace  transform of Y when a ( t )  = 
Ay, and is  given by 

Exact under the provision that a is  constant. With respect to  the approximation  concerning the gap t,. 
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so that 

Yl*(Ay) = e-7 ATfl + yA]. 

An upper  bound on the probability of success of the first 
transmission in a  busy period is  obtained by 

Pa, = f e x p  {-YATmJ + (1 - f )  exp {-ym(O,Trn)]. 

The  upper bound  on throughput is then given by 

&f exp {-TAT,} + ( 1  - f )  exp { - ~ m ( o , T m ) }  x, = w 
B l  + 1 

(50) 
Limit when t d  + 0: When td --+ 0, the channel  capacity 

reduces to 

1 
2e 

x =  ( 1 - + ) - .  (51) 

Proof: We realize that  in  the limit (td --+ O ) ,  the 
problems  caused by  the  transient behavior are insignificant 
(nonexistent when td = 0). We  see then from (24) that 

D t ,  = ~ l 1 I r l + ~ t d I l - - +  F 

since ptd --+ 0. Therefore, a ( t )  is constant  and equal to  
@ = A = 1 - F ;  (34) becomes : 

Y*(s) = exp {-@yT,} 

- 1  1 
B = - exp { @yT,J - - 

@Y @Y 

Similarly,' we can see that 

- 1  I = - *  

+Y 

Substituting  in (29) we get 

S = (1 - +)@yT,exp { -2@yTm} 

yielding a channel  capacity  equal to  (1 - +) ( l / 2 e )  under 
the optimum  condition @yTm = 1. Q.E.D. 

D. Numerical  Results  and  Discussion 
The expressions given in (29) and (50) relate  the 

throughput S to  the offered channel traffic y. When  all 
the system  parameters  have fixed values, the inform.ation 
capacity of the channel is defined as the maximum achiev- 
able  throughput.  This  throughput is obtained at   an 
optimum  value of the traffic y and results in infinite  packet 
delays. To obtain finite delays, we must reduce the 
throughput below the  capacity. 

The design problem in  BTMA consists of maximizing 
the channel  capacity  (under  the nonpersistent  protocol) 
by properly selecting the design variables 9, F ,  and t d  

when the  number of bits  per  packet, Om, and  the  total 
available  bandwidth W are assumed to be given. Because 
of the complicated form of the expressions for S,  numerical 
optimization  techniques are used. Below, we first discuss 
the restrictions  on the  input  data  and  the accuracy of the 
approximations. Then we give the numerical  results in 
the form of curves. The  subsequent curves  depict the 
changes in  system performance  due to  variations  in  the 
design parameters.  The various tradeoffs which influence 
the performance of BTMA  are also discussed. 

Let us first discuss some restrictions  and  approximations. 
To' reduce the dimensionality of the  problem,  and to  
provide an easy comparison with the 'previously  analyzed 
CS&ilA protocols we restrict ourselves to  the following: 

7 (maximum  propagation  delay) = 100 pslo 
p m  = 10 

hm 
- = seconds.'l 
W 

We consider two cases for b, and W .  

Case I :  6 ,  = 1000 bits; W = lo5 Hz. 
Case 11: bm = 10 000 bits; W = lo6 Hz. 

It is important  to  note  that, for the  same pm, Case I1 
requires higher transmitting power than does Case I; the 
following curves also show that Case I1 offers a  channel 
capacity higher than  that offered by Case I. 

Along with  the numerical  computation of S L  and S,  we 
computed the probability f that  the idle  period is smaller 
than td + 27. The  probability f never exceeded a few 
percent (less than 0.04) and  the two estimates  on  through- 
put  are very close to each  other.  (As an example, in  Table I 
we give the values of f encountered for various  values of 
the system  parameters.)  Therefore  all  numerical  results 
given in  the sequel will only correspond to  the lower 
bound S2. 

For F = and various  values of + we plot  in Fig. 17 
the channel  capacity  versus the observation window td. 
Similar  curves can be plotted for other  values of F.  For 
each couple ( F , + ) ,  the channel  capacity  reaches  its 
maximum a t  some optimum  value of t d .  This optimum is 
explained by  the  fact  that  the  larger td is, the  better is the 
probability of correct  detection D t ,  when the signal  is 
present  during the  entire window. However, the  larger id 
is, the longer the idle period will be,  as  it  can  be seen 
from  Fig. 16. The effect is reversed  as t d  gets  smaller. 

Note that when the  observation window shrinks to  0, 
the capacity of the channel decreases to  (1 - +) ( l / 2 e )  

10 This corresponds to a  maximum distance of about 20 miles. 
The  ratio of propagation  delay  to transmission time of a packet, 
denoted  by a, is in  all cases less than  (but  very close to) or equal 
to 0.01. 

11 The  bandwidth is  assumed to  be modulated a t  1 bit/Hz-s. 



TOBAGI AND KLEINROCK: PACKET SWITCHING  IN RADIO CHANNELS: PART I1 1431 

TABLE I 
ACCURACY OF THE APPROXIMATIONS 

Y s1 SU f 

F = 10-2 
= 10-2 

t d  = 7 x 10-4 

10  0.0897 
100 

0.0897 
0.4580  0.4581 

0.0008 

400 
0.0084 

0.6245  0.6269 
500 

0.0333 
0.6201 

600 
0.6238 

0.6084 
0.0414 

0.6137  0.0495 

10 
100 
500 
600 
700 

10 
100 
500 
600 
700 

10 

500 
100 

1000 
2000 

100 

1000 
500 

2000 
3000 

1000 
2000 
3000 
4000 
5000 

0,0890 
0.4586 
0.6411 
0.6338 
0.6222 

0.0818 
0.4443 
0.6635 
0.6625 
0.6565 

0.0473 
0.3206 
0.6318 
0.6807 
0.6406 

0.2249 
0.5511 
0.6540 
0.6830 
0.6583 

0.4692 
0.6018 
0.6552 
0.6779 
0.6858 

0.0890 
0.4587 
0.6440 
0.6380 
0.6279 

0.0818 
0.0444 
0.6653 
0.6651 
0.6599 

0.0473 
0.3206 
0.6322 
0.6825 
0.6476 

0.2249 
0.5512 
0.6546 
0.6855 
0.6639 

0.46'32 
0.6020 
0.6558 
0.6790 
0.6876 

0.0006 
0.0067 
0.0334 
0.0400 
0.0465 

0.0004 
0.0045 
0.0226 
0.0271 
0.0315 

0.0002 
0.0021 
0.0106 
0.0210 
0.0417 

0.0012 
0.0062 
0.0125 
0.0248 
0.0370 

0.0041 
0.0083 
0.0124 
0.0165 
0.0206 

NON PERSIST EN^ 

. I  1 , , , , , , , , I , , , , , , , ,! 2;:::s, , , , , , , I  W = 100 kHz 

0 
10.5 10.4 1 0 3  10.2 

DETECTION  TIME ld 

Fig. 17. BTMA-channel capacity versus  observation window t d .  

(capacity provided by  the  pure ALOHA access mode 
[l], [6]) as shown in  the previous section.  Qualitatively 
speaking, t d  + O  reduces to  very  bad detection (;.e., 
D --+ 0), and  terminals  behave  in  a  pure ALOHA mode. 

In  Fig. 18, we plot for various F ,  the maximum  capacity 
of the channel (maximized over t d )  versus J,. We  note  here 
that  the maximum capacity is not  very  sensitive to small 
variations of 9. However there is a  certain  range of I) 

which yields the  best performance. For those  values of F 
considered in  the  graph ( F  = 10-3,10-2,10-1,0..5), the 
optimum I) is in  the range [10-2,2 x 10-21. 

In  Fig. 19, we plot the capacity (maximized over J ,  
and t d )  versus F .  Note that for both Case I and Case 11, 
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2 .5 
- 
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NON.PERSISTENT  BTMA 
W = 1W kHz 
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Fig. 18. BTMA-channel capacity (maximized over t d )  versus $. 

8 ,  
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* 
a 
a 

7 = 100 PSEC 
a : 0.01 

m 
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Y 
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W = 1 M H z  

b, = IO4 BITS 

2 .7 t 

W = 100 kHz 

b, = 1000 BITS 

-I 

I 1 1 
10.3 10.2 1 10.1 

Fig.  19. BTMA-channel capacity (maximized over t d  and $) 
versus F. 

FALSE ALARM  PROBABILITY  F 

the capacity of the channel is  a  logarithmic  function of F .  
The  ultimate performance (1.0.68 for Case I and ~ ~ 0 . 7 2  
for Case 11) is obtained for F -+ 1. However, the channel 
capacity is not  very sensitive to  variations of F .  The effect 
o f  P can be explained as follows: For fixed values of J ,  
and td the larger F is, the  better is the  quality of correct 
detection D ( t )  (see, for example, Fig. '13).  Thus, for a 
particular  value of y, the channel  time  wasted by  inter- 
ference is smaller;  thc channel idle time, however, which 
is a  function of (1 - F )  y is  larger;  thus a tradeoff exists 
between idle time  and  time Lvasted by  intcrference. The 
overall performance is not easily expressed. The plot 
corresponding to Case I1 exhibits the same  linear  behavior 
on the semilogarithmic  graph, but acheives a larger 
capacity.12 

To compare the delay  performance of BTMA for 
various  values of the system  parameters, we first consider 
the  quantity G/S,  the average  number of transmissions 
and schedulings that a  packet  incurs before successful 
transmission. 

l2 The larger the  bandwidth is, the  better is the correct  detection 
D(v)  [see (26)]. Thus larger W provides larger  channel  capacity. 
However, we note from Figs. 15 and 16 that  the channel capacity 
is always bounded from above by  the  capacity of CSMA with 
propagation  delay equal  to 27. 
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Fig. 20. BTMA-average  number of schedulings  and  transmissions. 

In Fig. 20 we plot, for each  value of F ,  G / S  versus S for 
those  values of $ and t d  yielding the maximum  channel 
capacity.  (Strictly  speaking, we should  plot G/S versus S 
for all  pairs ( $ , t d )  and  then  draw  their lower envelope. 
However, the difference  between  this lower envelope and 
the plotted  curve  corresponding to  the optimum fi and t d  
for maximum  capacity is so minor that we restrict  our- 
selves to  the  latter.) 

Note that  for each  value of S there exists  a  value of F 
minimizing G/S.  However for relatively  small  values of S 
(not  too close to  the  saturation  point of the channel) we 
note that  the higher the  probability of false  alarm F is, 
the larger  is G/S. An explanation  can be given by  the 
following fact: when G -+ 0 and S -+ 0, the terminal  incurs 
an average  number of schedulings and transmissions  equal 
to (1/1 - F )  . This is shown on Fig. 20 at  S = 0. (In 
some cases  such as  in the curve  corresponding to F = 0.9, 
we have 1irns-o ( C / S )  slightly  larger than (1/1 - F )  ; 
this is  due to  the  fact  that  the curve does not correspond 
to  the lower envelope.) To best  compare the effect F'has 
on G/S,  we plot  in  Fig. 21 G/S versus F for  constant S. 
Thus, we show that for S < 0.5 and 10-3 < F < 10-1, 
G / S  is small  and  fairly  insensitive to F ,  and  that  for 
F > lo-' it  increases  rapidly  with  increasing  values of F .  
For larger  values of throughput,  the choice of F is more 
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Fig. 21. BTMA-G/S versus F for constant S. 

critical. A good operating  point  should  then be in  the  flat 
part of the curves. 

G/S,  as a measure of delay,  can be of importance  since 
the complexity of the  equipment  and  the  implementation 
of the protocol  can be directly  related to  the  number of 
schedulings and transmissions that a  packet  incurs.  For 
example, a t  each  scheduling the terminal  has to generate 
a  random  number  determining  the  scheduling  delay. Of 
even  more  importance  in  evaluating the performance of 
such  a  system is the  determination of the  actual  packet 
delay, defined as  the  time lapse since the packet is first 
generated,  until  the  time  it is successful. As discussed in 
Part I [l], the  mathematical  determination of packet 
delays is fairly complex, and  simulation  techniques  are 
employed.  For  various  values of F ( F  = lop3 and F = 0.5) , 
by  selecting the optimum  system  parameters ( $ , t d )  with 
respect to channel  capacity, we simulated the BTR4A 
mode. In  Fig. 22, we plot  the throughput-minimum-delay13 
curve  for  these  values of F .  It is to be  noted that, even 
though G/S can be significantly affected  by F ,  the mini- 
mum delay is insensitive to F.  However, for each  value 
of S thcre exists  a  value of F which provides the lowest 

l3  Delay  is  minimized with  respect  to a. (See [l].) In  BTMA, 
the  larger F is, the large? is  G/S. The minimum  delay  is  obtained 
for very  small  values of X .  
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SLOTTED NON-PERSISTENT BTMA 
a = 0.01 

SLOTTED NON-PERSISTENT CSMA 
WITHOUT  HIDDEN  TERMINALS 

, l  .2 .3 .4 .5 .6 .7 .8 .9 1 
THROUGHPUT S 

Fig. 22. BTMA-throughpubdelay tradeoffs ( a  = 0.01). 

delay. By comparing the lower envelope of these  through- 
put-delay  curves to  the curve  corresponding to  the non- 
persistent  CSMA  without  hidden  terminals, we note the 
relatively good performance of BTMA. 

IV.  CONCLUSION 

The hidden-terminal  problem seriously degrades the 
performance of CSRIA. To eliminate  this  problem  in 
single-station  environments, the use of a busy-tone  channel 
has been considered. In  this  paper, the nonpersistent 
BTMA mode has been  analyzed  and the approximations 
made  in  the analysis were shown to  have a  very  minor 
effect in  evaluating the channel  performance. The channel 
capacity  (optimized  over II, and t d )  and  the  packet delays 
are  not  very sensitive to F ;  but when CIS  is  considered, 
we see that (unreasonably)  large  values of F may  have 
a significant effect even when S < 0.5 and  that  the choice 
of F is more  critical  for S > 0.5. For W = 100 kHz and 
b, = lo3 bits  (Case I ) ,  and a 5 0.01, in  order  to keep 
G/X low, F should lie in  the range [10-3,10-1]. For  this 
range of F the channel  capacity lies in  the range C0.62, 
0.661. These  capacities are  obtained for the  optimum 
values of I) lying in  the range 2 x 10-21 and  the 
corresponding  optimum  values of td .  Similar  results are 
readily  obtainable for other values of W. 

TABLE I1 
CAPACITY C FOR THE VARIOUS PROTOCOLS CONSIDERED ( a  = 0.01) 

Protocol Capacity C 

Pure ALOHA 0.184 
Slotted ALOHA 0.368 
I-persistent CSMA 0.529 
Slotted 1-persistent  CSMA 0.531 
Nonpersistent BTMA 

W = 100 kHz  0.680 
W = 1000 kHz  0.720 

0.1-persistent CSMA 0.791 
Nonpersistent  CSMA 0.815 
0.03-persistent CSMA 0.827 
Slotted  nonpersistent  CSMA 0.857 
Perfect  scheduling 1.000 _~ 

Thus  the nonpersistent  BTMA  constitutes a  fairly good 
solution to  the “hidden  terminal”  problem,  providing  a 
maximum channel  capacity of approximately 0.68 when 
a = 0.01 and W = 100 kHz,  and 0.72 when a = 0.01 
and W = 1 MHz,  as compared to 0.52 for nonpersistent 
CShilA with  no  hidden  terminals (0.85 for  slotted non- 
persistent CSMA with no hidden terminals). It should be 
noted that while in CSMA sensing the presence of a trans- 
mission involves  a one-way propagation  delay a = 0.01, 
BTRIA requires  a  round-trip  delay 2a = 0.02 to perform 
the same  operation.  Furthermore, the performance of the 
nonpersistent BTMA is  insensitive to  the precise setting 
of the various  system  parameters II,, t d ,  and F .  

We summarize the above  results  in  Table I1 (CSMA 
capacities  assume  no  hidden  terminals)  for a = 0.01. 
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